影响冷却塔液体温度的因素
冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行。
现在的冷却塔盘管内液体的温度降低多少,是衡量冷却塔效率的标尺,那影响冷却塔盘管内液体温度的因素,成为用户比较关心的问题,厂家根据多年的实践,得出了许多重要因素,为改良塔提供了基础数据,是其冷效的着重改进对象。根据蒸发散热原理,塔内的风量增加,风在盘管表面的作用力就会相对增加,散热就会加快,管内流体温度就会降低,则流体温度升高,这个方法是控制流体温度的合理方法,如果风机使用的是单速电机,在运行中温度过高时,可以重新启动排风系统来解决,使塔顶的冷却塔风机处于正常运行时。
冷却塔盘管内的冷却流体温度和热负荷、冷却水量息息相关,增加盘管内冷却流体的流动速度,管内流体的温度就会提高,流体的流动速度变的慢了,流体温度也会跟着下降,因为管内流体的速度决定着流体与盘管外的喷淋水、空气的接触时间,当地空气中的湿球温度下降,冷却流体的温度也下降,下降的温度有所偏差,测试出风机从刚开始启动,到全速转动所需要一定的时间。
4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成功着陆,航天员翟志刚、王亚平、叶光富终于回家了。
神舟飞船返回舱的回家之旅可谓惊心动魄。鲜为人知的是,在经历灼烧、黑障、开伞减速等环节之后,返回舱仍然有约每秒8米的速度。而此时航天员“背部朝下、面朝天”地坐在返回舱里,如此高的着陆速度将损伤航天员的颈椎。为确保他们的安全,必须降低冲击。
在神舟十三号载人飞船返回着陆的后几米,位于返回舱底部的“伽马刹车指令员”测算着返回舱的速度和其距离地面的高度。在飞船返回舱降落至预定高度时,“伽马刹车指令员”准确发出了着陆反推发动机点火指令,关键一脚“刹车”,让返回舱在反推力的作用下平稳着陆。
“伽马刹车指令员”由中国航天科工集团三院35所研制,是飞船的关键设备,已先后服役于神舟八号至神舟十二号飞船。