FIAMM 非凡蓄电池12V72Ah 12SP72参数/规格
IAMMSSP系列是根据市场长期运作所得经验研制而成的。SSP系列电池的出品,是为了确保在不同环境中都能体现出优异的放电性能。
FIAMM的追求在于不断的对生产工艺、设备及技术进行改进。FIAMM工业电池遵循ISO9001质量管理体系和ISO14001环保体系的要求。FIAMM工业电池在技术上的持续投资是我们的产品拥有更精良的品质、更高的可靠性。
SSP系列阀控铅酸电池是多种备用性电源的理想选择。
非凡蓄电池技术特点
◆极板于板栅:加厚的极板和板栅,保证了长久的使用寿命。
◆隔板:超细玻璃纤维隔板。
◆质FVO on request )外壳材质:ABS塑料,可用FVO防火型材料。
◆安全阀:安全低压气阀。
FIAMM非凡蓄电池SP系列供应、产品报价、产品价格、产品型号、产品图片;
FIAMM非凡蓄电池SP系列供应、产品技术参数、产品安装说明、产品使用说明、产品规格尺寸~!!
1)采用钢壳组合结构,可积木式安装,占地面积小,占空间尺寸小,空间适应性强,便于安装在各种复杂的现场;
2)采用阻燃性PVC材料包裹的软连接条,极大地减小了接触电阻,避免了因接触电阻大引起的电池组内压降,使电池组供电效率更高;
3)软连接条预留了连接可靠的检测头,杜绝监控连接虚焊或虚接而导致的监控信号错误,提高电池监控工作的可靠性;
4)采用插拔式面板,使维护检查更方便省事:
5)独特的板栅合金配方和正极板加厚设计,提高极板耐腐蚀能力;
6)体积比能量(47.33Ah/dm3)和重量比能量(15.38Ah/kg)高,即同样容量的电池单体体积、重量比其他铅酸电池小而轻,在国内处地位;
7)电池内部采用极群支撑技术,消除了电池卧放时因重力作用对极群焊接部位产生的应力,使焊接部位的腐蚀速度小,杜绝电池内部断路,保证电池运行安全,提高电池使用寿命;
8)针对正极板在使用过程中必然产生的生长现象,采用控制生长方向技术,使正极板向预留空间生长,消除电池因正极板生长导致的内部短路;
9)壳盖采用加强设计,杜绝使用过程中电池鼓胀变形破裂,提高电池的抗振性及抗冲击性;
10)电池在寿命期内电解质会被消耗,4、5年内普通电池AGM隔膜会产生弹性疲劳,使隔膜与极板之间产生隔断,终止电解质的传输,使电池寿命过早终止;bosfa电池采用极群预压缩技术,保证电池在整个寿命期内保持必需的隔膜压缩比,给电池提供畅通的电解质传输通道:
11)一体化大容量电池采用高、宽极板设计,降低了大容量电池的成本,避免内部并联带来的不可靠和体积庞大,消除极板数量增加引起的电池内部散热困难,杜绝因电池内部温升引起的容量降低和热失控的可能性。
非凡蓄电池则彻底地解决了铅酸蓄电池上述这些自身无法克服的不足。其胶质把酸根子牢牢裹住,具有很好的物理性,对极板起着保护作用,极大地提高蓄电池的抗震动性能,避免蓄电池内部短路,能在各种恶劣的环境下安全使用。不受空间限制,使用时可任意方位放置。
非凡蓄电池12SP72/技术参数
主要应用和关键优点
为达到佳性能和排除电路干扰而设计是以下应用的理想产品:
-UPS应用
-应急照明
-信号
-安全及报警系统
-轻型牵引应用
-野营和帆船
12V整体式电池
为15分钟到20小时放电而进行的优化设计
10年的设计寿命
便于安装在电池柜或电池架上
无溢出
FOV级阻燃塑料外壳
VRLA AGM电池技术和内部气体在复合效率达99%
免维护无需加水
对于航空/海洋/铁路/公路运输均无危害
99.99%可循环使用
智能化和集成化
智能化的发展是系统智能集成(ASIPM),即将电源电路、各种保护以及PWM控制电路等都集成在一个芯片上,制成一个完整的功率变换器IC。集成电力电子模块(IPEM)是将驱动、自动保护、自诊断功能的IC与电力电子器件集成在一个模块中。由于不同的元器件、电路、集成电路的封装或相互连接产生的寄生参数已成为决定电力电子系统性能的关键,采用IPEM方法可减少设计工作量,便于生产自动化,提高系统质量、可靠性和可维护性,缩短设计周期,降低产品成本。
IPEM与IPM或PIC的不同之处在于后者是单层单片集成,一维封装;而前者是高电压、大电流、多层多片集成,三维封装,结构更复杂,多方向散热,其热设计也更加重要。IPEM研究课题中有待解决的基本问题是结构的确定和通用性,新型电力电子器件评估的主要方面是开关单元、拓扑结构、高电压大电流功率器件的单片集成。大功率无源器件集成、IPEM三维封装(控制寄生参数,将寄生影响控制在小范围)、热管理、IPEM设计软件、接口与系统的兼容性、IPEM性能预测、可靠性冗余和容错等都需要跨学科研究。因为与现代电力电子学相关的学科十分广泛,包括基础理论学科,如固体物理、电磁学、电路理论;理论学科如电力系统、电子学、系统与控制、电机学及电气传动、通信理论、信号处理、微电子技术;及电磁测量、计算机、CAD等,覆盖了材料、器件、电路与控制、磁学、热设计、封装、CAD集成、制造、电力电工应用等技术。就目前我国电力电子技术发展的现状而言,迫切需要跨学科并运用多种技术进行联合研究,以适应当今电力电子科技前沿技术的发展。